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Abstract
We present a joint implementation of dynamical-mean-field theory (DMFT) with the
pseudopotential plane-wave approach, via Wannier functions, for the determination of the
electronic properties of strongly correlated materials. The scheme uses, as input for the DMFT
calculations, a tight-binding Hamiltonian obtained from the plane-wave calculations by
projection onto atomic-centered symmetry-constrained Wannier functions for the correlated
orbitals. We apply this scheme to two prototype systems: a paramagnetic correlated metal,
SrVO3, and a paramagnetic correlated system, V2O3, which exhibits a metal–insulator
transition. Comparisons with available linear-muffin-tin-orbital (LMTO) plus DMFT
calculations demonstrate the suitability of the joint DMFT pseudopotential plane-wave
approach to describe the electronic properties of strongly correlated materials. This opens the
way to future developments using the pseudopotential plane-wave DMFT approach to address
total-energy properties, such as structural properties.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Dynamical electron correlations play an important role in
the physics of strongly correlated electronic materials, in
particular in determining the properties of their paramagnetic
and ferromagnetic phases, as well as their metal–insulator
transitions. The latter transitions are related to some of the
most dramatic effects observed in transition-metal oxides,
such as the colossal magnetoresistance effect in doped
manganites [1, 2]. The properties of transition-metal oxides
are also known to be controlled by a strong and complex
interplay between electronic, magnetic, and structural degrees
of freedom [2]. This interplay leads to giant responses to small
changes in external parameters such as temperature, pressure,
magnetic field, or doping, which makes such materials
attractive for technological applications.

A new theoretical framework has made possible in recent
years the incorporation of dynamical correlations in electronic

4 Present address: National Renewable Energy Laboratory Golden,
CO 80401, USA.

structure calculations of strongly correlated materials [3–5]. It
combines the dynamical-mean-field theory (DMFT) of many-
body physics with density-functional electronic structure
calculations in the local-density approximation (LDA), or
in the generalized gradient approximation (GGA), and is
commonly referred to as LDA + DMFT. So far LDA + DMFT
computations have been generally implemented with the linear
muffin-tin orbital (LMTO) method, and in some cases also
with mixed-basis methods [7], which also incorporate atomic-
like orbitals in the basis set. In view of the importance,
however, of the interplay between structural and electronic
properties in correlated oxides, it would be highly desirable
to have a joint implementation of DMFT with the electronic
structure pseudopotential plane-wave method. The latter
method is indeed known to be well suited to address total-
energy properties, such as structural properties. This is related
to the plane-wave basis, in particular, which is independent of
the atomic positions in the unit cell and whose completeness
can be controlled by a single parameter, the plane-wave kinetic
energy cutoff.
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Recently, approaches based on Wannier functions have
been proposed to carry out LDA + DMFT computations, using
e.g. atomic-centered Wannier functions [6], or maximally
localized Wannier functions [7], or Wannier functions
constructed with the N th order muffin-tin-orbital method [8].
For strongly correlated materials, Wannier functions represent
a convenient, physically sound set of localized orbitals for
the correlated electrons that can be used to construct an
interface between DMFT and LDA/GGA calculations. This
is especially important for LDA/GGA methods which do not
employ atomic-like basis functions, as is the case of the
pseudopotential plane-wave method.

Here we present a joint implementation of DMFT with
the pseudopotential plane-wave approach, and demonstrate
its suitability to determine the electronic properties of
correlated oxides. This is a prerequisite to address, in
the future, also total-energy and structural properties. We
use as input for the DMFT calculations a tight-binding
Hamiltonian, H TB(k), constructed from the pseudopotential
plane-wave calculations using atomic-centered symmetry-
constrained Wannier functions for the correlated orbitals. We
apply this approach to two different test cases: a correlated
paramagnetic metal, SrVO3, with a simple cubic perovskite
structure, and a correlated paramagnetic system, V2O3, which
has a more complex trigonal crystal structure, and exhibits
a Mott–Hubbard transition. To our knowledge, this is the
first successful implementation of LDA + DMFT using the
pseudopotential plane-wave approach.

2. Method

2.1. LDA + DMFT calculation scheme

The standard (although simplified5) scheme generally used to
carry out LDA + DMFT calculations includes the following
three steps.

First, an LDA/GGA self-consistent electronic structure
calculation is performed for the crystal and phase of interest.
The calculated bands associated with the relevant correlated
orbitals (e.g. the transition-metal 3d-t2g orbitals in our
examples) are then mapped onto a k-dependent tight-binding
Hamiltonian, ̂H TB

LDA(k), where k is a vector of the crystal
Brillouin zone (BZ). In practice, in the case of LDA/GGA
calculations performed using, as a basis set, atomic-like
orbitals, this Hamiltonian is readily obtained as:

̂H TB
LDA(k) =

∑

m,m′,σ
H TB(σ )

mm′ (k)c†
kmσ ckm′σ (1)

where H TB(σ )
mm′ (k) are the matrix elements, in a given k and

σ spin-polarization subspace, of the LDA/GGA Hamiltonian
between the relevant correlated atomic-like orbitals, indexed
by m, m ′, and c†

kmσ (ckmσ ) is the creation (annihilation)
operator for an electron in orbital m with spin σ and

5 LDA + DMFT calculations are presently performed using a non-self-
consistent scheme. As has been proposed in [6] and [7], however, the charge
density could be recalculated from the DMFT solution (Green’s function)
and injected into an iterative LDA + DMFT loop, to reach a self-consistent
solution. In practice, however, this is a very demanding procedure, which to
the best of our knowledge has not been successfully implemented so far.

wavevector k. As we are interested here in the case of
paramagnetic phases, we will omit in the following the spin
label σ in H TB(σ )

mm′ . We note that, at the LDA/GGA level,
the paramagnetic phase is simply modeled by a non-magnetic
state. We are including in the sum, in equation (1), a minimal
basis set of m, m ′ orbitals corresponding to the relevant on-
site correlated orbitals near the Fermi energy. More generally,
however, additional non-correlated orbitals may be included,
when needed, to improve the description of the spectrum
further away from the Fermi energy [9]. For simplicity, we will
focus in the following on the case of periodic systems with a
single type of correlated atomic site.

Next, the LDA/GGA tight-binding Hamiltonian is
supplemented with on-site Coulomb interactions for the
correlated orbitals in a many-body Hamiltonian of the form:

̂H =
∑

k,m,m′,σ
H TB

mm′(k)c†
kmσ ckm′σ −

∑

I,m,σ

�εdcnImσ

+
∑

I,m

UnIm↑nIm↓ +
∑

I,m �=m′ ,σ,σ ′
(V − δσσ ′ J )nImσ nIm′σ ′ .

(2)

The index I labels the lattice sites, m, m ′ label the relevant
correlated atomic orbitals, σ , σ ′ the spin states (↑ and ↓),
and nImσ is the operator for the occupation of the correlated
orbitals. The first term, on the right-hand side of equation (2),
is the LDA/GGA part of the Hamiltonian. The second term is
a double-counting correction, formally introduced to remove
the on-site Coulomb interactions already present, in an average
way, in the LDA/GGA Hamiltonian. In principle, the double-
counting potential�εdc may be taken as [4]: �εdc = U(n̄− 1

2 ),
where n̄ is the average occupation per correlated orbital. In
practice, however, if one takes into account only d orbitals
(or only f orbitals), the double-counting correction acts on the
whole d(f) band and shifts it by �εdc. This potential amounts
thus to a rigid energy shift of the quasiparticle spectrum in
the DMFT calculations. It can therefore be absorbed into the
chemical potential, which in turn is determined by the number
of electrons. Hence the actual value of �εdc has no influence
on the spectral properties. The third and fourth terms, on the
right-hand side of equation (2), are the interaction terms, where
U is the on-site Coulomb repulsion parameter, J the Hund’s
rule exchange parameter, and V = U − 2J [10].

Finally, the model Hamiltonian, in equation (2), is solved
by means of DMFT. DMFT maps the lattice model onto an
effective single-impurity problem subject to a self-consistent
condition on the impurity self-energy, �̂(ε), or, equivalently,
on the local Green’s function, Ĝ(ε) [11]. This mapping
represents an exact solution in the limit of infinite dimension
of the lattice problem. The local impurity Green’s function and
self-energy matrices are related through:

Gmm′(ε) = 1

�BZ

∫

dk([(ε − μ)1 − HTB(k)

− �(ε)]−1)mm′ , (3)

where m,m ′ label the correlated orbitals, μ is the chemical
potential, 1, �(ε), and HTB(k) are the unitary, self-energy,
and LDA tight-binding-Hamiltonian matrices, respectively,
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and the integration extends over the BZ with volume �BZ.
Several different approaches may be used to solve the effective
impurity problem, including the numerical renormalization
group, exact diagonalization, the noncrossing approximation,
and the Quantum Monte Carlo (QMC) method. In the
present work, we employ, as impurity solver, the auxiliary
fields QMC method of Hirsch and Fye [12]. For a given
input impurity self-energy and Green’s function matrices, the
impurity solver yields a new set of Green’s function and self-
energy matrices [11]. The DMFT equations are solved in an
iterative self-consistent cycle, until self-consistency is reached.

2.2. Tight-binding Hamiltonian from pseudopotential
plane-wave calculations

Wannier functions provide a physically sound basis set to
construct model Hamiltonians for correlated electrons. In the
case of LDA/GGA plane-wave calculations, they also represent
a practical route to build Ĥ TB

LDA(k), given the delocalized nature
of the basis functions.

The Wannier functions are obtained here using the
approach by Ku et al [13]—inspired from the work by
Marzari and Vanderbilt [14], to obtain atomic-centered
Wannier functions with a given symmetry. First, a set
of M trial functions are generated from the (pseudo)
atomic wavefunctions of the correlated orbitals: |ϕmk〉 =
∑

R eikR|ϕR
m〉, where R are the lattice translation vectors and

|ϕR
m〉 are the atomic (pseudo) wavefunctions, in the unit cell R,

with a given symmetry. A set of M non-orthogonal Wannier
functions (WF) in k space (or tight-binding Wannier functions)
is then obtained by projecting these trial functions onto a set
of Bloch functions, |ψ jk〉, belonging to a chosen (correlated
bands) subspace:

| ˜Wmk〉 =
N2

∑

j=N1

〈ψ jk|ϕmk〉|ψ jk〉. (4)

The sum is over a Bloch subspace defined by imposing either
some fixed band numbers, N1 � j � N2, or an energy window,
E1 � ε j (k) � E2, for the electronic bands ε j (k). These
Wannier functions are then orthogonalized, by diagonalizing
their overlap matrix Omm′ , yielding a set of M orthogonalized
Wannier functions: |Wmk〉 = ∑

m′(O−1/2)mm′ | ˜Wm′k〉.
Using this basis set of Wannier functions, the tight-binding

Hamiltonian matrix is given by:

H TB−WF
mm′ (k) =

N2
∑

j=N1

〈Wmk|ψ jk〉〈ψ jk|Wm′k〉ε j (k), (5)

and can be used, in place of H TB
mm′(k), in the many-body

Hamiltonian, in equation (2). It should be noted that
the conventional, real-space (lattice-site related) Wannier
functions, |W R〉

m , are simply the Fourier transforms of the tight-
binding Wannier functions: |W R

m 〉 = 1
Nk

∑

k e−ikR|Wmk〉. Only
the tight-binding Wannier functions, however, are explicitly
needed in the implementation.

We implemented this scheme to construct H TB(k), in
k space, in the framework of the pseudopotential plane-
wave method. This was done as an interface between the

Quantum-Espresso pwscf package [15] and the QMC-DMFT
code. The matrix elements 〈ψ jk|ϕmk〉, in equation (4),
can be conveniently evaluated in reciprocal space, in
the pseudopotential plane-wave scheme. For the trial
wavefunctions |ϕmk〉, we generated wavefunctions belonging
to the point-group representations of the correlated atomic site.
This was done by diagonalizing the occupation matrix [16]—
calculated in an initial (arbitrary) orthogonal basis set in
the l angular-momentum subspace of the correlated atomic
orbitals, and using the corresponding eigenstates, which belong
to a specific representation. The Hamiltonian H TB(k) was
evaluated on a k-point grid in the irreducible part of the
BZ. The integration, in equation (3), was performed using
the analytical tetrahedron method [17], and was restricted to
the irreducible part of the BZ by symmetrizing the Green’s
function matrix.

2.3. Technical details: QMC-DMFT computations

Computationally, the most involving part of the calculations
is the evaluation of the path integral in the auxiliary-
field QMC method, to solve for the local impurity Green’s
function [11]. The QMC method maps the interacting
electron problem onto a sum of non-interacting problems by
means of the Trotter discretization and Hubbard–Stratonovich
transformation [11, 18]. The imaginary-time integrals are
represented, in the Trotter discretization, by L imaginary-time
slices of size � = β/L, with β = 1/KBT . For an M-orbital
impurity problem, the Hubbard–Stratonovich transformation
introduces M(2M − 1) auxiliary Ising fields for each time
slice. In addition to the tolerance parameter of the DMFT self-
consistency, the number of time slices L and the number of
Monte Carlo sweeps NMC for the stochastic integration of the
path integral are the sole convergence parameters of the QMC-
DMFT calculations. It should be noted that the computational
cost of the QMC algorithm scales, to the leading order in L, as
∼M(2M − 1)NMC L3 [18].

The QMC method has the advantage of having formally
no approximation. Very low temperatures, however, are not
accessible, as the numerical effort scales as 1/T 3. From the
imaginary-time self-consistent Green’s function obtained from
the QMC-DMFT computations, the real-frequency single-
particle spectral functions are computed using the maximum
entropy method [19].

3. Applications

The joint DMFT pseudopotential plane-wave scheme de-
scribed in the previous sections was applied to two test
cases, SrVO3 and V2O3. For the density-functional calcula-
tions, we used the Perdew–Burke–Ernzerhof GGA exchange–
correlation functional [20] together with Vanderbilt utrasoft
pseudopotentials [21]. We used a kinetic energy cutoff of
35 Ryd (350 Ryd) for the plane-wave expansion of the elec-
tronic states (core-augmentation charge). The self-consistent
calculations were performed with a (4, 4, 4) Monkhorst–Pack
k-point grid [22]. For the computation of HTB(k) and of the
Green’s functions matrix, in equation (3), we used a (10, 10,
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Figure 1. Density of states of SrVO3 obtained from the GGA
pseudopotential plane-wave calculations. The short- (long-) dashed
line shows the V-3d-t2g (eg) Wannier-projected density of states. The
generic characters of the bands are also indicated at the top of the
figure. The zero of energy corresponds to the Fermi level.

10) k-point grid centered at �. The experimental values of
the lattice parameters of SrVO3 (a = 3.84 Å) [23] and V2O3

(a = 4.95 Å, c = 14.00 Å) [24] have been used in our calcu-
lations.

For SrVO3, we set the on-site Coulomb interaction U =
5.55 eV and Hund’s rule parameter J = 1 eV [25]. For V2O3,
we used J = 0.93 eV [24] and several different values of
U [6]. The QMC-DMFT calculations were performed at T =
580 K (β = 20 eV−1), using 80 imaginary-time slices. In the
case of V2O3, we also performed calculations at T = 1160 K
(β = 10 eV−1), using 40 imaginary-time slices. In all QMC-
DMFT calculations we used ∼106 Monte Carlo sweeps.

3.1. SrVO3

SrVO3 is a prototype d1 correlated paramagnetic metal. It has
a simple cubic perovskite structure and remains paramagnetic
down to low temperatures. It is an ideal test case for first-
principles many-body calculations. In figure 1, we show the
density of states (DOS) obtained for SrVO3 from the GGA
pseudopotential calculations. The spectrum is in agreement
with previous LDA calculations [7, 25]. The valence states
of SrVO3 consist of completely occupied oxygen 2p states,
located in the energy range −7 to −2 eV below the Fermi
energy, and partially occupied V-3d t2g states, near the Fermi
energy.

From the pseudopotential plane-wave calculations, we
generated the V-3d-t2g and eg Wannier functions from the
Bloch functions corresponding to the five lowest-energy (3d)
bands, in the energy window −1 to 5.5 eV. The corresponding
projected Wannier t2g and eg DOSs are also displayed in
figure 1. Because of the ideal octahedral symmetry of the
V sites, hybridization is forbidden between the t2g and eg

states. HTB(k) is hence block diagonal with respect to these
two subspaces. We have used, as correlated subspace, the
t2g Wannier-functions subspace, and the corresponding t2g-
Hamiltonian block for the DMFT computations.
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rb

ita
l)

Figure 2. Spectral function for SrVO3 at T = 580 K obtained from
the GGA + DMFT computations using the t2g projected Hamiltonian
from the pseudopotential plane-waves calculations. The zero of
energy corresponds to the Fermi level.

It should be noted that, in the special case of cubic
symmetry, the Green’s function matrix of the t2g states,
in equation (3), may be expressed as: Gmm′ (ε) =
∫ dεD(ε′)
ε−μ−ε′−�mm (ε

′) δmm′ . This is valid, however, only when the
local matrices (self-energy and Green’s function matrices) are
proportional to the unitary matrix, i.e. in the case of cubic and
higher symmetry. In the present work we always used the more
general Hamiltonian formulation with the k space integration.

In figure 2, we display the corresponding single-particle
spectral function obtained from the QMC-DMFT calculations
at T = 580 K. Taking into account the correlation effects
within the t2g manifold leads to substantial modifications
in the single-particle spectrum relative to the GGA result.
Correlation effects are responsible for a lower Hubbard
band around −2 eV, an upper Hubbard around 2.5 eV, and
a well-pronounced quasiparticle peak at the Fermi energy.
This is in general agreement with the photoemission and
inverse photoemission experiments on SrVO3 [26]. The
results in figure 2 compare well with previous LMTO-based
LDA + DMFT computations performed with the same value
of U [25], and are also consistent with the mixed-basis
LDA + DMFT calculations using somewhat smaller values of
U [7].

3.2. V2O3

V2O3 is a vanadium d2 system. The high-temperature
paramagnetic phase of V2O3 has a corundum trigonal crystal
structure, with four equivalent V sites in the unit cell. Within
the corundum structure, each V ion is surrounded by a distorted
oxygen octahedron [27, 28]. The V ions are arranged in pairs
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Figure 3. Density of states of V2O3 obtained from the GGA
pseudopotential plane-wave calculations. The short- (long-) dashed
line shows the V-3d-eg

π (a1g) Wannier-projected density of states.
The generic characters of the bands are also indicated at the top of
the figure. The zero of energy corresponds to the Fermi level.

along the c axis, with a stacking that can be obtained, starting
from an ideal chain of V ions along c, by introducing vacancies
at every third site [24]. While the V–V pairs along the c axis
are surrounded by face-sharing oxygen octahedra, in the a–
b plane, each V ion has three nearest neighbors with edge-
sharing oxygen octahedra [27].

Assuming ideal V octahedral sites in V2O3, the V-3d
atomic states are split into t2g and eg orbitals, where the two
degenerate eg orbitals are empty and the three degenerate t2g

orbitals are filled with two electrons. When the symmetry is
further reduced by a small trigonal distortion of the octahedra
in the corundum structure, the t2g orbitals further split into
a non-degenerate a1g orbital oriented along the c axis, and
two degenerate eg

π orbitals oriented predominantly in the a–
b plane.

In figure 3, we show the DOS of V2O3 obtained from
the GGA pseudopotential calculations. The oxygen 2p states
of V2O3 are located roughly between −8 and −4 eV below
the Fermi energy. The V-3d t2g-like states are located in an
energy window between −1.5 and 1.5 eV, and the eg

σ states
are approximatively between ∼2 and 4 eV. This is consistent
with previous LDA calculations [24, 28, 29]. The GGA (and
also LDA) calculations yield a metallic phase for V2O3, with a
high DOS at the Fermi energy.

We generated Wannier functions with a1g and eg
π

symmetry from the Bloch states enclosed in the energy window
−1.5 to 1.5 eV (see figure 3). The corresponding Wannier-
projected DOSs are also displayed in figure 3. We used
these Wannier functions to construct HTB(k) and carry out
the GGA + DMFT computations. The results are shown in
figures 4 and 5 for two different temperatures: T = 1160 K
and 580 K, respectively. The separate a1g and eg

π contributions
to the spectral function are displayed in the upper and lower
panels, respectively. At T = 1160 K, calculations were
performed for U = 5.6 and 6 eV. An insulating phase is
obtained for U = 6 eV, while the system is still metallic
at U = 5.6 eV. The results in figure 4 agree well with the
available LMTO-based LDA + DMFT calculations performed
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Figure 4. V-3d a1g and eg
π contributions to the spectral function of V2O3 at T = 1160 K, as obtained from the GGA + DMFT computations

using the t2g-like Hamiltonian constructed from the pseudopotential plane-wave calculations. The results are shown for two different values of
the on-site Coulomb interaction, U = 5.6 and 6 eV. The vertical dotted line indicates the Fermi energy.
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Figure 5. Same data as in figure 4, but for T = 580 K and U = 5 and 5.6 eV.

at the same temperature [6, 24, 29], and in particular with the
results obtained using a Wannier-projected Hamiltonian [6].
The pseudopotential implementation is found to yield a slightly
larger critical U for the insulating phase (U ∼ 6 eV) compared
to the LMTO implementation (U ∼ 5.5 eV) [6]. This is
related to the bandwidth of the LDA/GGA t2g-like states, which
is slightly larger in the pseudopotential case compared to the
LMTO case.

At T = 580 K, we performed calculations for U = 5 and
5.6 eV. An insulating phase is found at U ∼ 5.6 eV, whereas
at U = 5 eV the system is metallic, with a large DOS at the
Fermi energy. In the latter case, one observes a quasiparticle
peak at the Fermi energy in the a1g orbital-resolved spectral
function. The results at T = 580 K, in figure 5, are in
good qualitative agreement with the results of LDA + DMFT
calculations using a Wannier Hamiltonian constructed with
the N th order muffin-tin-orbital method [30]. In the latter
study, a critical U of 4.2 eV was found for the insulating
phase. The larger critical U obtained here (5.6 eV) is attributed
mainly to the difference in the crystal structure. In [30]
the (V0.962Cr0.038)2O3 crystal structure was considered, which
corresponds to the experimental insulating structure. The
increased U is also due in part to the broader GGA band found
in the pseudopotential calculations. One observes also some
small differences in the peak structure, between the present
results in figure 5 and the spectral function in [30]. These
are attributed mainly to differences in the DMFT calculational
details, such as the use of two different interpolation schemes
(Ulmke–Janis–Vollhardt scheme [31] versus cubic splines) for

the Fourier transformation of the local Green’s function in the
two studies.

3.3. Discussion and outlook

The results we have presented here show that the DMFT
plus pseudopotential plane-wave scheme is both a practical
and suitable approach for the determination of the electronic
properties of strongly correlated oxides. A promising
extension of this approach concerns the determination of total-
energy properties, and in particular of structural properties
of correlated systems. The total energy, within the
LDA + DMFT, can be expressed as [32]: E = ELDA −
EDC − ∑

m,k ε
LDA
m,k + 〈H TB

LDA〉 + 〈HU 〉, where ELDA is
the LDA total energy, EDC is the double-counting energy
corresponding to the second term on the right-hand side of
equation (2),

∑

m,k ε
LDA
m,k is the sum of the LDA valence-

state eigenvalues, 〈H TB
LDA〉 = tr[HTBG], and 〈HU 〉 is the

interaction energy, corresponding to the third and fourth terms
on the right-hand side of equation (2), computed from the
double occupancy matrix [33]. The application of the DMFT
pseudopotential plane-wave approach to the determination of
structural relaxations is a line of development we are currently
pursuing.

4. Summary and conclusions

We have presented an implementation of the LDA + DMFT
approach within the pseudopotential plane-wave framework.
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This scheme was applied to two different test cases,
SrVO3 and V2O3. Comparison with available LMTO-based
LDA + DMFT calculations demonstrated the suitability of the
joint DMFT pseudopotential plane-wave scheme to describe
the electronic properties of strongly correlated materials. This
opens the way to future developments using the DMFT
pseudopotential plane-wave approach to address total-energy
and hence structural properties of correlated systems.
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